on a generalization of condition (pwp)

نویسندگان

x. liang

department of mathematics‎, ‎lanzhou university‎, ‎lanzhou‎, ‎gansu 730000‎, ‎p.r. china.‎ ‎ y. luo

department of mathematics‎, ‎lanzhou university‎, ‎lanzhou‎, ‎gansu 730000‎, ‎p.r. china.

چکیده

‎there is a flatness property of acts over monoids called condition $(pwp)$ which‎, ‎so far‎, ‎has received‎ ‎much attention‎. ‎in this paper‎, ‎we introduce condition gp-$(p)$‎, ‎which is a generalization of condition $(pwp)$‎. ‎firstly‎, ‎some  characterizations of monoids by condition gp-$(p)$ of their‎ ‎(cyclic‎, ‎rees factor) acts are given‎, ‎and many known results are generalized‎. ‎moreover‎, ‎some possible conditions on monoids that describe when their diagonal acts satisfy condition gp-$(p)$ are found‎. ‎finally‎, ‎using some new types of epimorphisms‎, ‎an alternative description of condition gp-$(p)$ (resp.‎, ‎condition $(pwp)$) is obtained‎, ‎and directed‎ ‎colimits of these new epimorphisms are investigated.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a generalization of condition (PWP)

‎There is a flatness property of acts over monoids called Condition $(PWP)$ which‎, ‎so far‎, ‎has received‎ ‎much attention‎. ‎In this paper‎, ‎we introduce Condition GP-$(P)$‎, ‎which is a generalization of Condition $(PWP)$‎. ‎Firstly‎, ‎some  characterizations of monoids by Condition GP-$(P)$ of their‎ ‎(cyclic‎, ‎Rees factor) acts are given‎, ‎and many known results are generalized‎. ‎More...

متن کامل

On Condition (G-PWP)

Laan in (Ph.D Thesis, Tartu. 1999) introduced the principal weak form of Condition $(P)$ as Condition $(PWP)$ and gave some characterization of monoids by this condition of their acts. In this paper first we introduce Condition (G-PWP), a generalization of Condition $(PWP)$ of acts over monoids and then will give a characterization of monoids when all right acts satisfy this condition. We also ...

متن کامل

a generalization of strong causality

در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...

on condition (g-pwp)

laan in (ph.d thesis, tartu. 1999) introduced the principal weak form of condition $(p)$ as condition $(pwp)$ and gave some characterization of monoids by this condition of their acts. in this paper first we introduce condition (g-pwp), a generalization of condition $(pwp)$ of acts over monoids and then will give a characterization of monoids when all right acts satisfy this condition. we also ...

متن کامل

On a p-Laplacian system and a generalization of the Landesman-Lazer type condition

This article shows the existence of weak solutions of a resonance problem for nonuniformly p-Laplacian system in a bounded domain in $mathbb{R}^N$‎. ‎Our arguments are based on the minimum principle and rely on a generalization of the Landesman-Lazer type condition‎.

متن کامل

On a generalization of central Armendariz rings

In this paper, some properties of $alpha$-skew Armendariz and central Armendariz rings have been studied by variety of others. We generalize the notions to central $alpha$-skew Armendariz rings and investigate their properties. Also, we show that if $alpha(e)=e$ for each idempotent $e^{2}=e in R$ and $R$ is $alpha$-skew Armendariz, then $R$ is abelian. Moreover, if $R$ is central $alpha$-skew A...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

جلد ۴۲، شماره ۵، صفحات ۱۰۵۷-۱۰۷۶

کلمات کلیدی
[ ' $ s $ ' , ' a c t u 2 0 0 e ' , ' u 2 0 0 e c o n d i t i o n $ ( p w p ) $ u 2 0 0 e ' , ' u 2 0 0 e c o n d i t i o n g p ' , ' $ ( p ) $ u 2 0 0 e ' , ' u 2 0 0 e g e n e r a l l y l e f t r i g h t i d e a l u 2 0 0 e ' , ' u 2 0 0 e q u a s i g ' , 2 , ' p u r e e p i m o r p h i s m u 2 0 0 e ' ]

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023